USC Publications.jpg


59. Inhibiting the hexosamine biosynthetic pathway lowers O-GlcNAcylation levels and sensitizes cancer to environmental stress Walter, L. A.;* Lin, Y. H.;* Halbrook C. J.; Chuh K. N.; He L.; Pedowitz, N. J.; Batt, A. R.; Brennan, C. K.; Stiles, B. L.; Lyssiotis, C. A.; Pratt, M. R. Biochemistry (2020) doi:10.1021/acs.biochem.9b00560. *Equal authorship


58. O-GlcNAc engineering of GPCR peptide-agonists improves their stability and in vivo activity. Levine, P. M.; Balana, A. T.; Sturchler, E.; Koole, C.; Noda H.; Zarzycka, B.; Daley, E. J.; Truong, T. T.; Katritch V.; Gardella, T. J.; Wootten, D.; Sexton, P. M.; McDonald, P.; Pratt, M. R. J Am Chem Soc (2019) 141, 14210-14219.

57. Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Darabedian, N.; Pratt, M. R. Methods Enzymol (2019) 622, 293-307.

56. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Levine, P. M.;* Galesic, A.;* Balana, A. T.;* Mahul-Mellier, A.-L.; Navarro, M. X.; De Leon, C. A.; Lashuel, H. A.; Pratt, M. R. Proc Natl Acad Sci USA (2019) 116, 1511-1516. *Equal authorship


55. Bioorthogonal profiling of a cancer cell proteome identifies a large set of 3-bromopyruvate targets beyond glycolysis. Darabedian, N.; Chen, T. C.; Molina, H.; Pratt, M. R.;* Schönthal, A. H.* ACS Chem Biol (2018) 13, 3054-3058. *co-corresponding authors

54. Asking more from metabolic oligosaccharide engineering. Gilormini, P.-A.; Batt, A. R.; Pratt, M. R.; Biot C. Chem Sci (2018) 9, 7585-7595.

53. Optimization of chemoenzymatic mass-tagging by strain-promoted cycloaddition (SPAAC) for the determination of O-GlcNAc stoichiometry by Western blotting. Darabedian, N.; Thompson, J.;  Chuh, K. N.; Hsieh-Wilson, L. C.; Pratt, M.R. Biochemistry (2018) 57, 5769-5774.

52. Simple and efficient preparation of O- and S-GlcNAcylated amino acids through InBr3-catalyzed synthesis of β-N-acetylglycosides from commercially available reagents. De Leon, C. A.; Lang, G.; Saavedra, M. I.; Pratt, M.R. Org Lett (2018) 20, 5032-5035.

51. Azide- and alkyne-bearing metabolic chemical reporters of glycosylation show structure-dependent feedback inhibition of the hexosamine biosynthetic pathway. Walter, L. A.; Batt, A. R.; Darabedian, N.; Zaro, B. W.; Pratt, M.R. ChemBioChem (2018) 19, 1918-1921.

50. The metabolic chemical reporter 6-azido-6-deoxy-glucose further reveals the substrate promiscuity of O-GlcNAc transferase and catalyzes the discovery of intracellular protein modification by O-glucose. Darabedian, N.; Gao, J.; Woo, C. M.; Pratt, M. R. J Am Chem Soc (2018) 140, 7092-7100.

49. Revolutionizing our understanding of amyloidogenic proteins by cryo-electron microscopy. Levine, P. M.; Pratt, M. R. Biochemistry (2018) 57, 895-896. *Viewpoint


48. O-GlcNAc modification inhibits the calpain-mediated cleavage of α-synuclein. Levine, P. M.; De Leon, C. A.; Galesic, A.; Balana, A.; Marotta, N. P.; Lewis Y. E.; Pratt, M. R. Bioorg Med Chem (2017) 25, 4997-4982.

47. The sulfur-linked analog of O-GlcNAc (S-GlcNAc) is an enzymatically stable and a reasonable structural-surrogate for O-GlcNAc at the peptide and protein levels. De Leon, C. A.; Levine, P. M.; Craven, T. W.; Pratt, M. R. Biochemistry (2017) 56, 3507-3517.

46. The new chemical reporter 6-alkynyl-6-deoxy-GlcNAc (6AlkGlcNAc) reveals O-GlcNAc modification of the apoptotic caspases that can block the cleavage/activation of caspase-8. Chuh, K. N.; Batt A. R.; Zaro, B. W.; Darabedian, N.; Marotta, N. P.; Brennan, C. K.; Amirhekmat, A.; Pratt, M. R. J Am Chem Soc (2017) 139, 7872-7885.

45. Metabolic chemical reporters of glycans exhibit cell-type selective metabolism and glycoprotein labeling. Batt, A. R.; Zaro, B. W.; Navarro, M. X.; Pratt, M. R. ChemBioChem (2017) 18, 1177-1182.

44. O-GlcNAcylation of α-synuclein at serine 87 reduces aggregation without affecting membrane binding. Lewis, Y. E.; Galesic, A.; Levine, P. M.; De Leon, C. A.; Lamiri, N.; Brennan, C. K.; Pratt, M. R. ACS Chem Biol (2017) 12, 1020-1027.

43. The small molecule 2-azido-2-deoxy-glucose is a metabolic chemical reporter of O-GlcNAc modifications in mammalian cells, revealing an unexpected promiscuity of O-GlcNAc transferase. Zaro, B. W.;* Batt, A., R.;* Chuh, K. N.; Navarro, M. X.; Pratt, M. R. ACS Chem Biol (2017) 12, 787-794. *Equal authorship


42. Synthesis of a Bis-thio-Acetone (BTA) Analog of the Lysine Isopeptide Bond and its Application to Investigate the effects of Ubiquitination and SUMOylation on α-Synuclein Aggregation and Toxicity. Lewis, Y. E.;* Abeywardana, T.;* Lin, YH.; Galesic, A.; Pratt, M. R. ACS Chem Biol (2016) 11, 931-942. *Equal authorship

41. Chemical Methods for Encoding and Decoding Posttranslational Modifications. Chuh, K. N.; Batt, A. R.; Pratt, M. R. Cell Chem Biol (2016) 23, 86-107.


40. O-GlcNAc Modification Blocks the Aggregation and Toxicity of the Protein α-Synuclein Associated with Parkinson's Disease. Marotta, N. P.; Lin, YH; Lewis, Y. E.; Ambroso, M. R.; Zaro, B. W.; Roth, M. T.; Arnold, D. B.; Langen, R.; Pratt, M. R. Nat Chem (2015) 7, 913-920.

39. Synthetic Proteins and Peptides for the Direct Interrogation of α-Synuclein Posttranslational Modifications. Pratt, M. R.; Abeywardana, T.; Marotta, N. P. Biomolecules (2015) 5, 1210-1227.

38. Chemistry-Enabled Methods for the Visualization of Cell-Surface Glycoproteins in Metazoans. Chuh, K. N.; Pratt, M. R. Glycoconj. J. (2015) 32, 443-454.

37. The Extent of Inhibition of α-Synuclein Aggregation In Vitro by SUMOylation is Conjugation Site- and SUMO isoform-selective. Abeywardana, T.; Pratt, M. R. Biochemistry (2015) 54, 959-961.

36. Chemical Methods for the Proteome-Wide Identification of Posttranslationally Modified Proteins. Chuh, K. N.; Pratt, M. R. Curr. Opin. Chem. Biol (2015) 24, 27-37.


35. Chemoproteomics Reveals Toll-like Receptor Fatty Acylation. Chesarino, N. M.; Hach, J. C.; Chen, J. L.; Zaro B. W.; Rajaram, M. V.; Turner, J; Schlesinger L. S.; Pratt, M. R.; Hang, H. C.; Yount J. S. BMC Biology (2014) 12, 91.

34. Changes in Metabolic Chemical-Reporter Structure Yield a Selective Probe of O-GlcNAc Modification. Chuh, K. N.;* Zaro, B. W.;* Piller, F.; Piller, V.; Pratt, M.R. J. Am. Chem. Soc. (2014) 136, 12283-12295. *Equal authorship

33. A Chemical Reporter for Visualizing Metabolic Cross-Talk between N-Acetyl-Glucosamine Metabolism and non-Carbohydrate Protein Modification. Zaro B. W.; Chuh, K. N.; Pratt, M.R. ACS Chem. Biol. (2014) 9, 1991-1996.

32. Using Chemistry to Investigate the Molecular Consequences of Protein Ubiquitination. Abeywardana, T.; Pratt, M.R. ChemBioChem (2014) 15, 1547-1554.

31. Identification of O-GlcNAc Modification Targets in Retinal Pericytes: Implications in the Pathogenesis of Diabetic Retinopathy. Gurel, Z.;* Zaro, B. W.; Pratt, M.R.*; Sheibani, N. PLoS One (2014) 9, e95561. *co-corresponding authors

30. A Dual Small-Molecule Rheostat for Precise Control of Protein Concentration in Mammalian Cells. Lin, YH.; Pratt, M. R. ChemBioChem (2014) 15, 805-809.


29. Molecular Probes for Protein Glycosylation. Hang, H. C.; Pratt, M. R. Book Chapter in: Chemistry, Molecular Sciences and Chemical Engineering (2013) Elsevier Publishing.

28. Site-Specific Differences in Proteasome-Dependent Degradation of Monoubiquitinated α-Synuclein. Abeywardana, T.; Lin YH.; Rott R.; Engelender, S.; Pratt, M. R. Chem. Biol. (2013) 20, 1207-1213.

27. An Alkyne-Aspirin Chemical Reporter for the Detection of Aspirin-Dependent Protein Modification in Living Cells. Bateman, L. A.; Zaro, B. W.; Miller, S. M.; Pratt, M. R. J. Am. Chem. Soc. (2013) 135,14568-14573.

26. N-Propargyloxycarbamate Monosaccharides as Metabolic Chemical Reporters of Carbohydrate Salvage Pathways and Protein Glycosylation. Bateman, L. A.; Zaro, B. W.; Chuh, K. N.; Pratt M. R. ChemComm. (2013) 49, 4328-4330. *‘Emerging Investigators 2013’ themed issue

25. Incorporation of Unnatural Sugars for the Identification of Glycoproteins. Zaro, B. W.; Hang, H. C.; Pratt, M. R. Methods Mol. Biol. (2013) 951, 57-67.


24. O-GlcNAc Modification Prevents Peptide-Dependent Acceleration of α-Synuclein Aggregation. Marotta, N. P.; Cherwien, C. A.; Abeywardana T.; Pratt M. R. ChemBioChem (2012) 13, 2665-2670

23. Small-Molecule Reprogramming of Cancer Metabolism. Pratt M. R. Chem. Biol. (2012) 19, 1084-1085. *Preview of Kung et al. Chem. Biol. 2012, 19, 1187-1198.

22. Semi-Synthetic, Site-Specific Ubiquitin Modification of α-Synuclein Reveals Differential Effects on Aggregation. Meier, F.; Abeywardana, T.; Dhall, A.; Marotta, N. P.; Varkey, J.; Langen, R.; Chatterjee, C.; Pratt M. R. J. Am. Chem. Soc. (2012) 134, 5468-5471.


21. Robust in-gel Fluorescence Detection of Mucin-type O-Linked Glycosylation. Zaro, B. W.; Bateman, L. A.; Pratt, M. R. Bioorg. Med. Chem. Lett. (2011), 21, 5062-5066. *Issue honoring Prof. Carolyn Bertozzi for 2011 Tetrahedron Young Investigator Award

20. Chemical Reporters for Fluorescent Detection and Identification of O-GlcNAc Modified Proteins Reveal Glycosylation of the Ubiquitin Ligase NEDD4-1. Zaro, B. W.; Yang, Y. Y.; Hang, H. C.; Pratt, M. R. Proc. Natl. Acad. Sci. USA (2011) 108, 8146-8151.


19. Precise Control of Protein Concentration in Living Cells. Lau, H.D., Yaegashi, J.; Zaro, B. W.; Pratt, M. R. Angew. Chem. Int. Ed. (2010) 49, 8458-8461.

Prior to Independent Career

18. N1rp1b/Nalp1b-Dependent Pyroptosis Involves Lysosomal Membrane Permeabilization, Cystosolic Cathepsin Activity and Bid Cleavage. Averette-Mirrashidi, K. M.; Pratt, M. R.; Yang, Y.; Bassilian, S.; Whitelegge, J. P.; Loo, J. A.; Muir, T. W.; Bradley, K. A. PLoS One (2009) 4, e7913

17. Structure activity analysis of semisynthetic nucleosomes: Mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. McGinty, R. K.; Koehn, M.; Chatterjee, C.; Chiang, K. P.; Pratt, M. R.; Muir, T. W. ACS Chem. Biol. (2009) 4, 958-968.

16. Direct Measurement of Cathespin B Activity in the Cytosol of Apoptotic Cells by an Activity Based Probe. Pratt, M. R.; Sekedat, M. D.; Chiang, K. P.; Muir, T. W. Chem. Biol. (2009) 16, 1001-1012.

15. A Full Length Group 1 Bacterial Sigma Factor Adopts a Compact Structure Incompatible with DNA Binding. Schwartz, E. C.; Shekhtman, A.; Dutta, K.; Pratt, M. R.; Cowburn, D.; Darst, S.; Muir, T. W. Chem. Biol. (2008) 15, 1091-1103.

14. Covalent Capture of Phospho-Dependent Protein Oligomerization by Site-Specific Incorporation of a Diazirine Photo-Crosslinker. Vila-Perello, M.; Pratt, M. R.; Tulin, F.; Muir, T. W. J. Am. Chem. Soc. (2007) 129, 8068-8069.

13. Small Molecule-Mediated Rescue of Protein Function by an Inducible Proteolytic Shunt. Pratt, M. R.; Schwartz, E. C.; Muir, T. W. Proc. Natl. Acad. Sci. USA (2007) 104, 11209-11214.

12. Synthesis of Large Biomolecules from Chemical Biology (Schreiber, S. L.; Kappor, T; Wess G.; Eds.). Pratt, M. R.; Muir, T. W. WILEY-VCH (Weinheim) (2007) pg. 537-561.

11. Synthetic Glycopeptides and Glycoproteins as Tools for Biology. Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev. (2005) 34, 58-68.

10. Identification, Function and Structure of the Mycobacterial Sulfotransferase that Initiates Sulfolipid-1 Biosynthesis. Mougous, J. D.; Petzold, C. J.; Senaratne, R. H.; Lee, D. H.; Akey, D. L.; Lin, F. L.; Munchel, S. E.; Pratt, M. R.; Riley, L. W.; Leary, J. A.; Berger, J. M.; Bertozzi, C. R. Nature Struct. Mol. Biol. (2004) 11, 721-729.

9. Deconvoluting the Functions of Polypeptide N-α-Acetylgalactosaminyltransferase (ppGalNAcT) Family Members by Glycopeptide Substrate Profiling. Pratt, M. R.; Hang, H. C.; Ten Hagen, K. G.; Rarick, J.; Gerken, T. A.; Tabak, L. A.; Bertozzi, C. R. Chem. Biol. (2004) 11, 1009-1016.

8. Trehalose is Required for Growth of Mycobacterium smegmatis. Woodruff, P. J.; Carlson, B. L.; Siridechadilok, B.; Pratt, M. R.; Senaratne, R. H.; Mougous, J. D.; Riley, L. W.; Williams, S. J.; Bertozzi, C. R. J. Biol. Chem. (2004) 279, 28835-28843.

7. Synthesis of 6-sulfo Sialyl Lewis X Glycans Corresponding to the L-Selectin Ligand “Sufloadhesin.” Pratt, M. R.; Bertozzi, C. R. Org. Lett. (2004) 6, 2345-2348.

6. Probing Glycosyltransferase Activities with the Staudinger Ligation. Hang, H. C.; Yu, C.; Pratt, M. R.; Bertozzi, C. R. J. Am. Chem. Soc. (2004) 126, 6-7.

5. Formation of 1,1-α,α-Glycosidic Bonds using Intramolecular Aglycone Delevery. A Convergent Synthesis of Trehalose. Pratt, M. R.; Leigh, C. L.; Bertozzi, C. R. Org. Lett. (2003) 5, 3185-3188.

4. Chemoselective Ligation Applied to the Synthesis of a N-linked Glycoform of CD52. Pratt, M. R.; Bertozzi, C. R. J. Am. Chem. Soc. (2003) 125, 6149-6159.

3. Synthesis of Thioether-Linked Analogs of the 2,3-STF and MECA-79 Antigens: Mucin-Type Oligosaccharides Associated with Cancer and Inflammation. Marcaurelle, L. A.; Pratt, M. R.; Bertozzi, C. R. ChemBioChem (2003) 4, 224-228.

2. Homogeneous Glycopeptides and Glycoproteins for Biological Investigation. Grogan, M. J.; Pratt, M. R.; Marcaurelle, L. A.; Bertozzi, C. R. Ann. Rev. Biochem. (2002) 71, 593-634.

1. Solid-Phase Synthesis of O-Linked Glycopeptide Analogs of Enkephalin. Mitchell, S.M.; Pratt, M.R.; Hruby, V.J.; Polt, R.L. J. Org. Chem. (2001) 66, 2327-2342